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Abstract: Theory-consistent (“structural”) gravity models are commonly used to model bilateral 
trade. Extensive simulations suggest that the Poisson Pseudo-Maximum Likelihood (PPML) 
estimator performs well in that setting. However, an influential review by Head and Mayer (2014) 
(“HM”) includes a simulation where PPML exhibits significant bias, which leads them to 
recommend a toolbox approach, including PPML and other estimators. I show that PPML’s bias is 
related to the noisiness of the data.. A more realistic error variance assumption reveals that even for 
the same distribution type as HM, PPML’s bias is 4% rather than the 27% they report.  
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1 INTRODUCTION 
Santos Silva and Tenreyro (2006) show that OLS produces inconsistent estimates of log-linearized 
models when the error term is heteroscedastic. Given that trade data are typically heteroskedastic, they 
recommend the Poisson Pseudo-Maximum Likelihood (PPML) estimator as the workhorse for 
theory-consistent (“structural”) gravity models, where bilateral flows are a function of market size, 
trade costs, and unobserved relative prices (Anderson and Van Wincoop, 2003). PPML provides 
consistent estimates in a wide variety of settings. Arvis and Shepherd (2013) and Fally (2015) 
demonstrate that PPML is unique among Generalized Linear Models (GLMs) in producing estimates 
that accord exactly with theory, as in Anderson and Van Wincoop (2003). Weidner and Zylkin (2021) 
prove that PPML estimates with two- and three-dimensional fixed effects are not inconsistent due to 
the incidental parameters problem, although bias corrections may be necessary. 

Simulation evidence supports this analysis. Santos Silva and Tenreyro (2006) consider strictly positive 
trade, while Santos Silva and Tenreyro (2011) show that PPML performs well even with a high 
proportion of zeros in the dependent variable. Santos Silva and Tenreyro (2021) review 15 years of 
literature, and conclude that the recommendation to use PPML as the workhorse for structural gravity 
has held up well to scrutiny. Of course, they recognize that no estimator is optimal in every set of 
empirical conditions. Their recommendation is that PPML represents a sensible first candidate in the 
absence of further knowledge about the data generating process. 

Head and Mayer (2014) (“HM”) is a widely cited review of gravity modeling, focusing on theoretical 
underpinnings and estimation. It presents simulation evidence using a data generating process 
consistent with structural gravity under a firm heterogeneity framework with fixed market entry costs, 
in which some trade flows are zero. As part of this simulation, they find that PPML performs poorly 
when the error term is a homoscedastic log-normal variable (HM Table 7). As a result, they 
recommended a toolbox approach to estimation, involving comparison of results from various 
estimators including PPML and the use of specification tests to ensure robustness.  

This paper shows that the HM simulation results for PPML are dependent on the magnitude of the 
error variance, which does not reflect the observed data upon which their simulation is based. A more 
realistic specification of the error term, even as a homoscedastic log-normal variable, produces only a 
minor degree of bias. The objective of this paper is therefore to rebalance applied researchers’ 
perceptions of the different estimators in HM’s toolkit, by showing where PPML’s bias comes from, 
and how it plays out in a simulation context that closely mirrors their observed source data. 

PPML estimates are in general biased even though they are consistent, and the bias depends on sample 
size and the error variance; however, this result has not been addressed in the applied international 
trade literature due to the fact that trade data typically have large N (Section 2). Section 3 contextualizes 
the HM simulation by considering a variety of values for the error variance, thereby showing that their 
results are not driven by homoscedasticity or zeros. In Section 4, I conduct a fresh simulation where 
sample moments accord more closely with HM’s observed trade flows, and show that all estimators 
in the HM toolkit in fact perform similarly: PPML’s bias is around 5% rather than the 27% HM report. 
The final section discusses directions for further research. 

2 BIAS IN PPML ESTIMATION 
It is well-known in the econometrics and statistics literatures that PPML estimates are biased in small 
samples, as is the case for nonlinear maximum likelihood estimates in general(Cox and Hinkley, 1974). 
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This section presents the intuition behind that result, which has not been addressed in the applied 
international trade literature because trade data typically have large sample sizes. 

The score function U for PPML with a single explanatory variable is: 

(1) 𝑈(𝑏) = ∑(𝑦𝑖 − exp(𝑥𝑖𝑏) 𝑥𝑖

𝑁

𝑖=1

 

Let �̂� be the parameter estimate obtained by setting (1) equal to zero and solving, with b as the true 
parameter. A second order Taylor series expansion around the true parameter gives: 

(2) 𝑈(�̂�) = 0 ≈ 𝑈(𝑏) + (�̂� − 𝑏)𝑈′(𝑏) +
1

2
(�̂� − 𝑏)

2
𝑈′′(𝑏) 

Taking expectations shows that the second and third terms vanish as N grows without bound, but 

that in finite samples, the third term is non-zero, which means that the estimate �̂� is biased. A second 

implication is that the third term depends on the variance of �̂�, which means that it also shrinks as the 
error variance declines.  

3 UNPACKING HM’S SIMULATION 
HM’s simulation only considers one set of parameter values. But the above analysis suggests that 
sample size and data noisiness should influence PPML’s empirical bias. This section therefore 
contextualizes their simulations by considering a range of parameter values and sample sizes. I use 
their data as the basis for each simulation, construct trade flows consistent with structural gravity in 
the same way, and use the same assumptions for error terms. As in their simulations, observable trade 
costs are log distance (coefficient = -1.000) and RTA membership (coefficient = 0.500). I consider 
square datasets with 50, 100, and 150 countries. 

System (1a)-(1d) is a standard structural gravity model (Anderson and Van Wincoop, 2003) with 
exporter and importer fixed effects S and M, where Y is output and E is expenditure; t is trade costs, 
and the cs are its observable components; theta is the trade elasticity; i and j index exporters and 
importers;  and e is an error term with unitary mean and finite variance, which captures unobservable 
trade costs: 

(1𝑎) 𝑋𝑖𝑗 = exp(𝑆𝑖 + 𝑀𝑗 + 𝑡𝑖𝑗
−𝜃) 𝑒𝑖𝑗 

(1𝑏) exp(𝑆𝑖) =
𝑌𝑖

∑
𝐸𝑙

𝑡𝑖𝑙𝑒𝑖𝑙
𝑙

 

(1𝑐) exp(𝑀𝑗) =
𝐸𝑗

∑ 𝑆𝑙𝑙 𝑡𝑙𝑗𝑒𝑙𝑗
 

(1𝑑) log 𝑡𝑖𝑗 = ∑ 𝑏𝑘𝑐𝑖𝑗
𝑘

𝑘
 

To conduct simulations that are comparable to HM, I focus on e. The upper panel of Figure 1 shows 
results for a homoscedastic log-normal error term2 with zero trade flows determined consistently with 

 
2 𝑒𝑖𝑗 = exp (𝑛𝑖𝑗), where 𝑛𝑖𝑗~𝑁(0, 𝜎). 
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a heterogeneous firms model with fixed market entry costs, as used for HM Table 7. The standard 
deviation of the logarithm of the error term ranges from 0.500 to 3.000 in increments of 0.500; HM’s 
value is 2.000. Comparing the two panels shows that structural zeros are not determinative: the bias 
is similar with and without structural zeros. The figure evidences bias in PPML estimates for HM’s 
error variance, but shows that its extent is increasing in the dependent variable’s noisiness, and 
decreasing in the number of countries in the dataset, as predicted.  

Figure 1: Simulation results for log-normal homoscedastic errors with (top) and without (bottom) structural zeros. 
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HM report bias in PPML estimates with a log-normal homoscedastic error, but not with a 
heteroscedastic error. Figure 2 contextualizes this result by varying the heteroscedasticity parameter 
H (100 in their simulation, ranging from 1 to 100,001 in mine, in increments of 20,000), where a larger 
value increases the error variance.3 The conclusion is the same: there are parameter values for which 
PPML’s bias is minimal, but there are also values for which it is significant. For a given sample size, 
the determinative factor is the noisiness of the dependent variable, which depends on the 
heteroscedasticity parameter.  

 

3 𝑒𝑖𝑗 = exp(𝑛𝑖𝑗) where 𝑛𝑖𝑗~𝑁 (−
log(1+𝐻

�̂�𝑖𝑗
⁄ )

2
, √log (1 + 𝐻

�̂�𝑖𝑗
⁄ )).. 
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Figure 2: Simulation results for log-normal heteroscedastic errors without structural zeros. 

 

4 PRACTICAL IMPLICATIONS 
The previous sections showed that PPML estimates are generally biased but consistent, and that the 
degree of bias depends on sample size and noisiness. From an applied perspective, the key question 
is: how serious is PPML’s bias in a real world setting? 

The HM dataset includes observed trade data in addition to simulated values. Comparing the two 
shows that the simulateds are much noisier than the observations (variance to mean ratio of 1,555,074 
versus 53,327). For a given sample size, PPML’s simulated bias is therefore likely to be substantially 
worse than its bias when using observed data. 

I conduct a simulation that accords more closely with the moments of observed trade in the HM 
dataset. I fill in missing observations in CIF imports by mirroring, then keep only non-missing 
observations.. I perform 1,000 simulations using the same trade cost coefficients as HM and observed 
trade costs to create simulated bilateral flows for non-missing observations. I use total exports and 
imports as proxies for production and expenditure. I set the standard deviation of the logarithm of 
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the error to 0.6, compared with 2.0 in HM, based on a grid search. The simulated and observed 
variances accord closely (ratio = 1.051) and the means are identical. 

Table 1 reports results for the estimators in HM’s toolkit approach, including PPML. First, the realistic 
error variance assumption results in much smaller bias for PPML and MPML (numerically equivalent 
to PPML in expenditure shares rather than levels). For distance, HM report a PPML bias of 27%, 
whereas in the new simulation, it is only 4%. For the RTA dummy, the HM bias is 42%, compared 
with 5% in the new simulation. MPML estimates show even smaller bias. While there is no single 
estimator that is optimal in every context, this exercise shows that PPML’s bias is much less severe 
than previously thought. 

Table 1: Simulation results for the coefficients of log distance (upper panel) and RTA dummy (lower panel). 

 𝜎 = 0.6 𝜎 = 2.0 
 Estimate Std. Dev. Estimate Std. Dev. 

LSDV -0.968 (0.008) -0.81 (0.02) 
ETT -0.978 (0.009) -0.94 (0.02) 
EKT -0.996 (0.008) -0.99 (0.02) 
PPML -0.960 (0.052) -0.73 (0.14) 
GPML -1.192 (0.012) -1.05 (0.04) 
MPML -0.991 (0.021) -0.79 (0.06) 

 

 𝜎 = 0.6 𝜎 = 2.0 
 Estimate Std. Dev. Estimate Std. Dev. 

LSDV 0.527 (0.017) 0.63 (0.06) 
ETT 0.489 (0.018) 0.53 (0.06) 
EKT 0.503 (0.017) 0.50 (0.06) 
PPML 0.476 (0.116) 0.29 (0.43) 
GPML 0.280 (0.026) 0.41 (0.11) 
MPML 0.480 (0.048) 0.36 (0.15) 

Note: Abbreviations follow HM. Results for σ=2.0 come from HM Table 7 (reported precision). 
GPML results should interpreted cautiously due to convergence issues. 

5 CONCLUSION 
While PPML estimates are consistent under weak assumptions, they are generally biased. When 
simulated data are closely matched to observed noisiness, however, that bias is minimal. While the 
econometrics literature discloses attempts to remedy it (Firth, 1993), they do not prove effective with 
the type of bias considered here. Developing further corrections could therefore be a fruitful avenue 
for research. 
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