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a b s t r a c t

This note presents a simple generalization of the adaptive expectations mechanism in which the learning

parameter is time variant. Expectations generated in this way minimize mean squared forecast errors for

any linear state space model.

© 2011 Published by Elsevier B.V.

1. Introduction

Although it is tempting to see a dichotomy in the macroeco-

nomics literature between those (early) models based on adaptive

expectations and those (more recent) models based on rational ex-

pectations, the connection between the two mechanisms in fact

runs deep. Indeed, the original contribution of Muth (1960) was to

highlight that adaptive expectations are only rational in the sense

of minimizing mean squared forecast errors under strict assump-

tions as to the underlying data generating process. This paper ex-

tends that insight to a more general case, and shows that for a very

broad class of time series models – all those that can be written in

linear state space form – a generalized form of adaptive expecta-

tions is rational in the sense of producing minimummean squared

forecast errors. Thenecessary generalization to the adaptive expec-

tationsmechanism is the introduction of a time-varying adaptation

or learning parameter, which depends on the underlying charac-

teristics of the model.

In addition to Muth (1960), who showed that adaptive expec-

tations are rational if the data generating process is a randomwalk

with noise, contributions by Theil and Wage (1964) and Nerlove

and Wage (1964) addressed the optimality of the closely related

procedure of exponential smoothing. All three papers are spe-

cial cases of the more general approach taken here, which uses
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the Kalman Filter to derive similar results for the full set of time
series models that can be written in linear state space form. The
only previous research that uses the Kalman Filter in this way is
Cuthbertson (1988), who also focuses on an adaptive expectations
model with a time-varying adjustment parameter. However, he
does not provide a general framework that establishes the opti-
mality of such forecasts, but instead relies on a series of special
cases. In addition, Farmer (2002) develops a generalized version of
adaptive expectations which he shows to be rational under given
circumstances, but his approach again relies onmore specific cases
than the one used here. The present contribution represents a fur-
ther generalization of both approaches.

The paper proceeds as follows. To introduce the material,
Section 2 provides an alternative proof of the proposition in Muth
(1960) by transforming the model into linear state space form and
applying the Kalman Filter. Section 3 presents the general problem
for any linear state space model, applies the Kalman Filter, and
shows that its forecasts can be expressed as a generalization of the
traditional adaptive expectations model. Section 4 concludes.

2. Adaptive expectations, rationality, and the Kalman filter

As is well known, the traditional adaptive expectations model
applied to, for example, a commodity price pt , takes the following
form:

p∗

t = p∗

t−1 + β


pt−1 − p∗

t−1



(1)

where stars indicate expected prices, and 0 < β < 1 is a learning
parameter that determines the speed with which prior errors are

0165-1765/$ – see front matter© 2011 Published by Elsevier B.V.

doi:10.1016/j.econlet.2011.11.017



Author's personal copy

B. Shepherd / Economics Letters 115 (2012) 4–6 5

‘‘corrected’’ when making forecasts. Early work using adaptive
expectations justified it on intuitive grounds (e.g., Nerlove, 1956).
Muth (1960) subsequently showed that expectations formed in
this way are rational in the sense of minimizing mean squared
forecast errors provided that prices evolve according to a random
walk, i.e.:

pt = pt−1 + et (2)

where et is a standard, white noise error term. Although the
meaning of the term ‘‘rational expectations’’ has evolved in the
more recent literature, I use it here in the same sense as Muth
(1960), i.e. expectations are rational if they minimize mean-
squared forecast errors.

By way of introduction to the generalized model presented in
the next section, it is useful to provide an alternative proof of
Muth’s result. This is easily done using the Kalman Filter. To set
up the problem, I rewrite the price process in terms of a stochastic
trend µt , as follows:

pt = µt + ηt (3)

µt = µt−1 + ωt . (4)

An agent who is rational produces one-step ahead forecasts
(mt ) of pt that minimize the mean squared forecast error. Since
the system described by Eqs. (3) and (4) takes the form of a linear
state space model, minimum mean squared error forecasts can be
obtained recursively by applying the Kalman Filter1:

vt = pt − mt (5)

Vt = var(vt) = Qt + σ 2
η (6)

Kt =
Qt

Vt

(7)

mt+1 = mt + Ktvt (8)

Qt+1 = Qt (1 − Kt) + σ 2
ω. (9)

Substituting Eq. (5) into Eq. (8) gives:

mt+1 = mt + Kt (pt − mt) (10)

which takes the traditional adaptive expectations form of Eq. (1)
provided that Kt is a constant. To prove that this is the case,
substitute Eq. (6) into Eq. (7) to give:

Kt =
Qt

Qt + σ 2
η

. (11)

Time invariance of K therefore reduces to time invariance of Q ,
i.e. Qt+1 = Qt = Q . Substituting (11) into (9) and imposing the
equality yields:

Q = Q



1 −
Q

Q + σ 2
η



+ σ 2
ω. (12)

Solving for Q and retaining only the positive solution because it
is a variance gives:

Q =

σ 2
ω +



σ 4
ω + 4σ 2

ωσ 2
η

2
(13)

which must be strictly positive for any non-trivial model. It
therefore follows that Kt is indeed constant, and that Eq. (10) is
in the traditional adaptive expectations form. Moreover, it follows
fromEq. (11) and the fact thatσ 2

η is strictly positive that 0 < K < 1,
as in the traditional model.

1 Standard sources such as Durbin and Koopman (2001) and Harvey (1989)

provide full derivations and proofs of the properties of the Kalman Filter.

3. Generalized adaptive expectations

This section extends the analysis in Section 2 to a more general
setting. Specifically, I use the Kalman Filter to show that the
generalized form of adaptive expectations given by Eq. (10) is
rational for a broad range of data generating processes in a
multivariate setting. The sense in which Eq. (10) represents a
generalization of the adaptive expectations mechanism is that the
learning parameterβ is not time invariant, as in the originalmodel,
but instead can change over time.

The linear state space model takes the following general form,
using matrix notation:

yt = Ztαt + εt εt ∼ N (0,Ht) (14)

αt+1 = Ttαt + Rtηt ηt ∼ (0,Qt) (15)

α1 ∼ N (a1, P1) . (16)

It is a very general specification that includes, for example,
all models in the ARIMA class. By defining yt as a p × 1 vector,
it also includes multivariate extensions of the ARIMA class. In
addition, appropriate specification of the matrices Zt and Tt allows
for the imposition of cross-equation restrictions consistentwith an
underlying model of the economy.

The Kalman Filter for the model in Eqs. (11) and (12) is given
by:

vt = yt − Ztat (17)

Kt = TtPtZ
′

tF
−1
t (18)

at+1 = Ttat + Ktvt (19)

Ft = ZtPtZ
′

t + Ht (20)

Lt = Tt − KtZt (21)

Pt+1 = TtPtL
′

t + RtQtR
′

t. (22)

Substituting Eq. (14) into Eq. (16) gives:

at+1 = Ttat + Kt (yt − Ztat) (23)

and premultiplying by Zt+1 gives:

Zt+1at+1 = Zt+1Ttat + Zt+1Kt (yt − Ztat) . (24)

To see that Eq. (21) takes the form of generalized adaptive
expectations, note that from (12) and (13) E [yt] = Ztat =

ZtTt−1at−1, and thus:

E [yt+1] = E [yt] + Zt+1Kt (yt − E [yt]) . (25)

In general, Zt+1Kt will be time-varying, and so the coefficient of
adaptation will change over time, rather than remain constant as
in the traditional adaptive expectations model.

4. Conclusion

This note has developed a simple generalization of the adaptive
expectations mechanism in which the learning parameter is time-
varying. Whereas standard adaptive expectations are only rational
when the underlying data generating process is a random walk
with noise, the generalization is rational for a much broader class
of time series models. Because the proof of rationality relies on
the Kalman Filter, generalized adaptive expectations can easily be
seen to be rational for any time series model that can be written
in linear state space form. This class of models is very broad, and
includes, for example, all ARIMA models. The analysis presented
here highlights the connection between adaptive and rational
expectations, in an extension of the original work of Muth (1960).
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